Transformers are a deep learning architecture that has gained popularity in recent years. They rely on a simple yet powerful mechanism called attention, which enables AI models to selectively focus on certain parts of their input and thus reason more effectively. Transformers have been widely applied on problems with sequential data, in particular in natural language processing (NLP) tasks such as language modeling and machine translation, and have also been extended to tasks as diverse as speech recognition, symbolic mathematics, and reinforcement learning. But, perhaps surprisingly, computer vision has not yet been swept up by the Transformer revolution.
To help bridge this gap, we are releasing Detection Transformers (DETR), an important new approach to object detection and panoptic segmentation. DETR completely changes the architecture compared with previous object detection systems. It is the first object detection framework to successfully integrate Transformers as a central building block in the detection pipeline.
DETR matches the performance of state-of-the-art methods, such as the well-established and highly optimized Faster R-CNN baseline on the challenging COCO object detection data set, while also greatly simplifying and streamlining the architecture.
链接地址:https://ai.facebook.com/blog/end-to-end-object-detection-with-transformers