Recent advancements in deep reinforcement learning (deep RL) has enabled legged robots to learn many agile skills through automated environment interactions. However, the lack of sample efficiency is still a major bottleneck for many algorithms, and researchers have to rely onusing off-policy data,imitating animal behaviors, orperforming meta learningto reduce the amount of real world experience required. Moreover, most existing works focus on simple, low-level skills only, such as walking forward, backward and turning. In order to operate autonomously in the real world, robots still need to combine these skills to generate more advanced behaviors.
Today we present two projects that aim to address the above problems and help close the perception-actuation loop for legged robots. In “Data Efficient Reinforcement Learning for Legged Robots”, we present an efficient way to learn low level motion control policies. By fitting a dynamics model to the robot and planning for actions in real time, the robot learns multiple locomotion skills using less than 5 minutes of data. Going beyond simple behaviors, we explore automatic path navigation in “Hierarchical Reinforcement Learning for Quadruped Locomotion”. With a policy architecture designed for end-to-end training, the robot learns to combine a high-level planning policy with a low-level motion controller, in order to navigate autonomously through a curved path.
链接地址:https://ai.googleblog.com/2020/05/agile-and-intelligent-locomotion-via.html